Cyclopenta[a]phenalen-9(8H)-one: an extended phenalenone system

Yoshikazu Sugihara,*.^a Reiko Hashimoto,^b Hitoshi Fujita,^b Noritaka Abe,^a Hiromasa Yamamoto,^b Takashi Sugimura^b and Ichiro Murata^b

^a Department of Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi City 753, Japan

^b Department of Chemistry, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

Cyclopenta[a]phenalen-9(8H)-one, a keto form of cyclopenta[a]phenalen-9-ol, has been found to be exclusively in an extended phenalenone form.

Molecular orbital calculations show moderate and comparable aromatic resonance energies for cyclopenta[a]phenalene **1a** and cyclohepta[a]phenalene **2**, compounds which are of theoretical interest.¹ Whilst our successful synthesis of 2^2 has shown it to have a polar and highly electron-donating aromatic structure, the parent molecule of **1a** has yet to be synthesized although the downfield shifts of the skeletal protons for a simple derivative **1b** were consonant with the calculated resonance energy.³ Cyclopenta[a]phenalen-7(8H)-one **3**, a keto form of cyclopenta[a]phenalen-7-ol, however, showed no propensity for enolization under the neutral conditions.³ behaviour which

resembles keto-enol equilibration for azulenols⁴ rather than phenols. In attempting to identify the structural features which affect keto-enol equilibration for a cyclopenta[a]phenalenol. we examined cyclopenta[a]phenalen-9(8H)-one **4a** and discovered a number of novel properties associated with its keto-enol equilibration.

Introduction of α,β -unsaturation into 5 was effected by

Scheme 1 Reagents and conditions: i. lithium diisopropylamide, Me₃SiCl (1.7 equiv.), tetrahydrofuran, room temp. 30 min, then 2.3-dichloro-5.6-dicyanobenzoquinone (1.8 equiv.), 2.4,6-trimethylpyridine. benzene, room temp., 4 h, 35%; ii, ethylene glycol, toluene-*p*-sulfonic acid, benzene, reflux, 4 h, 61%; iii, *m*-chloroperbenzoic acid (1.3 equiv.), sodium hydrogen phosphate, dichloromethane, 0 °C, 45 min \longrightarrow room temp., 4 h, 72%; iv, 2 mol dm⁻³ hydrochloric acid, 71 and 11°, for 9 and 10, respectively; v. KOBu^t (1.1 equiv.), Et₂O, -78 °C, 1 h, 76°,: vi. toluene-*p*-sulfonic acid, benzene, reflux, 2 h, 62%

enolization followed by oxidation,⁵ to give 6. Acetalization of 6 accompanied with a double-bond shift gave 7, which was epoxidized with MCPBA to yield 8. Deacetalization of 8 with 2 mol dm⁻³ aqueous hydrochloric acid gave 9 together with 10. The former was smoothly converted into the latter with KOBu^t. Treatment of 10 with toluene-*p*-sulfonic acid in benzene yielded 4a as a stable crystalline compound.

The ¹H NMR spectra of **4a** in various aprotic solvents $[CDCl_3, CD_2Cl_2, (CD_3)_2CO]$ show a signal due to two aliphatic protons at δ_H 3.15. The maximum of the longest wavelength absorption band in cyclohexane appears at 414 nm (log ε 4.26), which is quite different both in shape and intensity from that of **1b**.³ These findings indicate that the equilibrium between **4a** and **1c** is exclusively in favour of the former.

As for **1b**, the ¹H NMR spectrum of **4a** in deuteriotrifluoroacetic acid displays a pattern characteristic of a phenalenyl cation moiety.

Scheme 2 Reagents and conditions: i, lithium diisopropylamide (3.0 equiv.), tetrahydrofuran, -78 °C, 1 h then MeCOCl (3.0 equiv.), -78 °C \longrightarrow room temp. for 2 h, 46%; ii, lithium diisopropylamide (3 equiv.), tetrahydrofuran, -78 °C, 1 h, then EtCOCl (10.0 equiv.), -78 °C \longrightarrow room temp. for 1 h, 61%; iii, 5% aq. KOH. EtOH, room temp., 10 min, 53%; iv, 5% aq. KOH, EtOH, room temp., 5 min; v. CH₂N₂, ether, room temp. 31, 16 and 32% for **1f**, **4d** and **4e** respectively

Although attempted O-alkylation of 4a with methyl fluorosulfonate³ to yield a fully conjugated product was a failure, acylation successfully gave the diacylated products 1d and 1e. Since use of less than one equivalent of the acylation reagent with 4a yielded the C-acylated product 4b, it is likely that the diacylated products were produced by initial C-acylation followed by O-acylation. Treatment of compound 4c with diazomethane gave a C-methylation product 4d together with two O-methylation products 1f and 4e. Acetylation of compound 3 under conditions similar to those described above afforded

Scheme 3 Reagents and conditions: lithium diisopropylamide (4 equiv.), tetrahydrofuran, -78 °C, 40 min, then CH₃COCI (15.3 equiv.), -78 °C \longrightarrow room temp. for 30 min, 50%

1g. These results of enol fixation show that the aromatic stabilization energy of the cyclopenta[*a*]phenalene system is small.

The maxima of the longest wavelength in the absorption bands for **4a**. **4d** and **4e** are centred at *ca*. 410–450 nm, a sharp drop being shown to the longer wavelength side of each band. In contrast, absorption bands in the visible region of **1d**, **1e** and **1f** are shifted to the longer wavelengths with long tailing up to > 700 nm. The positions and shapes for **4b** and **4c** are interestingly intermediate, namely at *ca*. 450 nm with tailing up to 650 nm. This spectroscopic evidence indicates that **4b** and **4c** are partly enolized with conjugation as in **1**. The longest wavelength absorption for **1g** appears at 470 nm with tailing up to 650 nm, the band shape of which resembles that for **1d**. **1e**. **1f** and **1b**.

The significant dependence upon structure of keto-enol equilibration indicates that the π electron delocalization energies for the keto and enol forms of cyclopenta[*a*]-phenalenones are comparable, the naphthalene skeleton being mainly responsible for the total stabilization energy of each form. The resultant marked UV spectral changes are explained by characteristic non-alternant conjugation³ in the cyclopenta[*a*]phenalene and alternant conjugation in extended phenalenone systems.

Experimental

Structures for all the compounds were established by spectroscopic methods and combustion analyses.

Cyclopenta[a]phenalen-9(8H)-one 4a

A solution of 7.7a-dihydro-7a-hydroxycyclopenta[*a*]phenalen-9(8*H*)-one **10** (120.3 mg, 0.509 mmol) and a catalytic amount of toluene-*p*-sulfonic acid (10 mg, 0.05 mmol) in benzene (50 cm³) was refluxed for 2 h. After cooling, the solution was washed with 10% aq. NaHCO₃ and worked up. Column chromatography of the product over deactivated silica gel (3% H₂O) gave **4a** as light brown needles (68.7 mg, 62%). mp 164–167 °C: r_{max} cm⁻¹ (CHCl₃) 1660 and 1550; δ (CDCl₃) 3.15 (d. *J* 1.5. 2 H). 6.54 (d. *J* 1.7, 1 H). 6.79 (dd. *J* 1.7 and 1.5, 1 H). 7.26–7.72 (m, 4 H). 7.88 (dd. *J* 8.0 and 1.3. 1 H) and 8.04 (dd. *J* 7.1 and 1.3. 1 H): δ (CF₃CO₂D) 3.92 (br s, 1.2 H). 7.25 (br s, 0.5 H), 7.88 (t. *J* 7.4. 1 H), 7.91 (s, 1 H), 7.99 (t, *J* 6.9, 1 H), 8.26 (d, *J* 7.4, 1 H), 8.35 (d, *J* 7.4, 1 H), 8.59 (d, *J* 6.9, 1 H) and 8.80 (d, *J* 6.9, 1 H).

8-Propionyl-9-propionyoxycyclopenta[a]phenalene 1e

Lithium diisopropylamide was prepared from diisopropylamine (0.51 cm³, 2.84 mmol) in anhydrous THF (3.0 cm³) and butyllithium in hexane (2.84 mmol, 1.81 cm³) in the customary manner. Cyclopenta[a]phenalen-9(8H)-one 4a (206.8 mg, 0.947 mmol) in anhydrous THF (18 cm³) was added over a period of 30 min. the mixture held at -78 °C which was then stirred at this temperature for 1 h. Freshly distilled propionyl chloride (0.82 cm³, 9.47 mmol) was added dropwise to the mixture which was then allowed to rise to room temperature over 1 h. The reaction was quenched with water and extracted with ether. Column chromatography of the product over deactivated silica gel (10% water) with benzene gave 1e as dark brown needles (191.9 mg. 61%), mp 114-116 °C: v_{max}/cm⁻¹ (CHCl₃) 1765 and 1615; δ (CDCl₃) 1.22 (t, J 7.5, 3H), 1.34 (t, J 7.5, 3 H), 2.69 (q, J 7.5, 2 H), 2.85 (q, J 7.5, 2 H), 7.02 (br s, 1 H), 7.40-7.66 (m, 2 H), 7.68-7.92 (m, 3 H), 8.16 (dd, J 7.3 and 1.1, 1 H) and 8.65 (br s, 1 H).

Reaction of 8-acetylcyclopenta[a]phenalen-9(8H)-one 4c with diazomethane

A few drops of 5% aq. KOH were added to a solution of 8-acetyl-9-acetoxycyclopenta[a]phenalene **1d** (148.4 mg, 0.491 mmol) in ethanol (20 cm³) at room temperature. After evaporation of the mixture to one third of its volume under reduced pressure it was acidified with 2 mol dm³ aq. HCl and extracted with ether (×3). Column chromatography of the product over deactivated silica gel (10% water) with benzene gave **4c** (68 mg, 53%). which was used without further purification.

To a solution of compound 4c (114.3 mg, 0.439 mmol) in ether (300 cm³) cooled in an ice-bath was added diazomethane in ether [from *N*-methyl-*N*-nitrosourea (5g)] and then MeOH (20 cm³). After being stirred for 2 h the mixture was evaporated under reduced pressure and the residue column chromatographed over deactivated silica gel (3% water) with benzene-ether (1:1, v/v) to give 1f as dark brown needles (37.3 mg, 31%), 4d as yellowish brown crystals (37.5 mg, 32%) and 4e as a brown solid (18.7 mg, 16%). Compound 1f: mp 200–205 °C (decomp.): v_{max}/cm^{-1} (CHCl₃) 1595; δ (CDCl₃) 2.52 (s. 3 H), 4.16 (s, 3 H), 6.98 (d. J1.0, 1 H), 7.61 (t like, J 7.5, 1 H), 7.69 (t like, J 8.2 and 7.5, 1 H), 7.90-7.99 (m, 3 H), 8.37 (dd, J7.5 and 1.1, 1 H) and 8.70 (d, J1.0, 1 H). Compound 4d; mp 139-141 °C: v_{max} cm⁻¹ (CHCl₃) 1710. 1665 and 1545; δ (CDCl₃) 1.54 (s. 3 H), 2.06 (s. 3 H), 6.76 (d. J 1.6, 1 H), 6.90 (d, J1.5, 1 H). 7.48-7.92 (m, 4 H). 8.08 (dd, J8.3 and 1.1, 1 H) and 8.33 (dd, J7.3 and 1.0, 1 H). Compound 4e: mp 139-141 °C: v_{max} cm⁻¹ (CHCl₃) 1655 and 1602; δ (CDCl₃) 2.75 (s. 3 H), 4.01 (s. 3 H), 6.68 (d, J 1.6, 1 H), 7.45-7.80 (m, 4 H), 7.67 (d, J 1.6, 1 H), 7.94 (dd like, J 8.0, 1 H) and 8.20 (dd, J 7.3 and 1.2, 1 H).

8-Propionylcyclopenta[a]phenalen-9(8H)-one 4b

Compound **4b**, prepared as reddish brown needles in a way similar to that of **4c**, had mp 138 139 °C; v_{max} cm⁻¹ (CHCl₃) 1600 and 1575; δ (CDCl₃) 1.35 (t, J 7.4, 3 H), 2.82 (q, J 7.4, 2 H), 6.77 (d, J 1.5, 1 H), 7.26 (d, J 1.5, 1 H), 7.52–7.90 (m, 5 H), 8.00 (br d, J 7.5, 1 H) and 8.29 (dd, J 7.7 and 1.0, 1 H).

8-Acetylcyclopenta[a]phenalen-7-ol 1g

Lithium diisopropylamide was prepared from diisopropylamine (0.20 cm³, 1.42 mmol) in anhydrous THF (5.0 cm³) and butyllithium in hexane (1.4 mmol, 0.95 cm³) in the customary manner. Acetyl chloride (4.9 mmol, 0.35 cm³) was added dropwise to the solution of **3** and lithium diisopropylamide, and the mixture was gradually warmed from -78 °C to room temperature. After 20 min the mixture was diluted with ether and extracted with ether. Column chromatography of the

product over deactivated silica gel (20% water) gave **1g** as dark red needles (39 mg, 50%), mp 168.5–169.6 °C; v_{max}/cm^{-1} (CHCl₃) 1600 and 1575; δ (CDCl₃) 2.60 (s, 3 H), 6.95 (d, J 4.0, 1 H), 7.40 (d, J 4.0, 1 H), 7.55–8.70 (m, 6 H) and 17.9 (s, 1 H).

Acknowledgements

This work was supported by a Grant-in-Aid for Developmental Scientific Research (B) (No. 06554027) from the Ministry of Education. Science and Culture, Japan.

References

 R. Zahradnik, J. Michl and J. Koutecky, Collect. Czech. Chem. Commun., 1964. 29, 1932; R. Zahradnik and J. Michl, Collect. Czech. Chem. Commun., 1965, 30, 520; R. Zahradnik, Angew Chem., 1965, 77, 1097; (b) B. A. Hess, Jr. and L. J. Schaad, J. Org. Chem., 1971, 36, 3418; (c) J. Aihara, Bull. Chem. Soc. Jpn., 1980, 53, 2689.

- 2 Y. Sugihara, H. Yamamoto, K. Mizoue and I. Murata, Angew. Chem., Int. Ed. Engl., 1987, 26, 1247.
- 3 Y. Sugihara, H. Fujita and I. Murata, J. Chem. Soc., Chem. Commun., 1986, 1130.
- 4 (a) K. Takase, T. Asao, Y. Takagi and T. Nozoe, J. Chem. Soc., Chem. Commun., 1968, 368; (b) T. Asao, S. Ito and N. Morita, Tetrahedron Lett., 1989, 30, 6693; (c) T. Morita, M. Karasawa and K. Takase, J. Tamkang, Univ., 1993, 32, 553.
 5 (a) I. Ryu, S. Murai, Y. Hatayama and N. Sonoda. Tetrahedron Lett.,
- 5 (a) I. Ryu, S. Murai, Y. Hatayama and N. Sonoda. *Tetrahedron Lett.*, 1978, **37**, 3455; (b) M. E. Jung and Y.-G. Pan. J. Org. Chem., 1977. **42**, 3961.

Paper 5/04393J Received 6th July 1995 Accepted 25th September 1995